10
Aug
05

Kleinian Double Cusp Group

This is my attempt to create the Kleinian Double Cusp Group on page 269 of Indra’s Pearls. Thanks to Dr. William Goldman for helping me get started with this. Here is some POV-Ray code for this fractal. See also my Double Spiral. You can also see this code on Roger Bagula’s web site.

(* runtime: 0.06 second *)
ta = 1.958591030 - 0.011278560I; tb = 2; tab = (ta tb + Sqrt[ta^2tb^2 - 4(ta^2 + tb^2)])/2; z0 = (tab - 2)tb/(tb tab - 2ta + 2I tab);
b = {{tb - 2I, tb}, {tb, tb + 2I}}/2; B = Inverse[b]; a = {{tab, (tab - 2)/z0}, {(tab + 2)z0, tab}}.B; A = Inverse[a];
Fix[{{a_, b_}, {c_, d_}}] := (a - d - Sqrt[4 b c + (a - d)^2])/(2 c); ToMatrix[{z_, r_}] := (I/r){{z, r^2 - z Conjugate[z]}, {1, -Conjugate[z]}};
MotherCircle[M1_, M2_, M3_] := ToMatrix[{x0 +I y0, r}] /. Solve[Map[(Re[#] - x0)^2 + (Im[#] - y0)^2 == r^2 &, Fix /@ {M1, M2, M3}], {x0, y0, r}][[2]];
C1 = MotherCircle[b, a.b.A, a.b.A.B]; C2 = MotherCircle[b.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a, a.b.a.a.a.a.a.a.a.a.a.a.a.a.a.a, a.b.A.B];
Reflect[C_, M_] := M.C.Inverse[Conjugate[M]];
orbits = Join[Reverse[NestList[Reflect[#, a] &, C1, 63]], Drop[NestList[Reflect[#, A] &, C1, 63], 1], Reverse[NestList[Reflect[#, a] &, C2, 71]], Drop[NestList[Reflect[#, A] &, C2, 56], 1]];
Show[Graphics[MapIndexed[({{a, b}, {c, d}} = #1; {Hue[#2[[1]]/15], Disk[{Re[a/c], Im[a/c]}, Re[I/c]]}) &, orbits]], PlotRange -> 35{{-1, 1}, {-1, 1}}, AspectRatio -> Automatic];

This animation shows the set morphing into a single cusp group.

Links

Advertisements

0 Responses to “Kleinian Double Cusp Group”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Welcome !

You will find here some of my favorite hobbies and interests, especially science and art.

I hope you enjoy it!

Subscribe to the RSS feed to stay informed when I publish something new here.

I would love to hear from you! Please feel free to send me an email : bugman123-at-gmail-dot-com

Archives

Blog Stats

  • 548,971 hits

%d bloggers like this: