Why?

Here’s the code. Varying the “max” would determine where you are zooming in the positive quadrant.

n=30; h=0.25; g=0.2; mu=0.07; zlist={Sqrt[3]+I,-Sqrt[3]+I,-2I};

image[xmin_,xmax_,ymin_,ymax_] :=

ParallelTable[z2=z[25]/.NDSolve[{z”[t]==Plus@@((zlist-z[t])/(h^2+Abs[zlist-z[t]]^2)^1.5)-g z[t]-mu z'[t],z[0]==x+I y,z'[0]==0},z,{t,0,25},MaxSteps->20000][[1]];

r=Abs[z2-zlist];

i=Position[r,Min[r]][[1,1]];

i,

{y,ymin,ymax,(ymax-ymin)/n},{x,xmin,xmax,(xmax-ymin)/n}]

max=3.2;

min=Table[max-10^-i,{i,0,3}]//N;

images=image[#,max, #, max]&/@min;

colors={1->{1,1,1},2->{0,0,0},3->{1,0,0}};

Graphics[Raster[#/.colors],ImageSize->Small]&/@images

logig or are the colours the important part for you:if you like science then take a peak at

my foto albums on face book science is also my favourite:stay healthy and prosper: ]]>

Regards,

Ingo