This minimal surface is a cross between acatenoid andhelicoid. It would be interesting to see what really happens when a spring is covered with a soap film. Click here to download some POV-Ray code. Here is some Mathematica code:
(* runtime: 0.6 second *)
x := Sin[alpha]Cosh[v]; y := Cos[alpha]Sinh[v];
Do[ParametricPlot3D[{x Cos[u] + y Sin[u], x Sin[u] - y Cos[u], u Cos[alpha] + v Sin[alpha]}, {u, 0, 2Pi}, {v, -2.25, 2.25}, PlotPoints -> {36, 10}], {alpha, -Pi/2, Pi/2, Pi/18}];



1 Response to “Catenoid/Helicoid”

  1. 1 Kareem Carr
    September 22, 2009 at 8:04 pm

    This is an amazing site. I am really impressed with what you can do with Mathematica. Can I ask you a question about getting images and video out of Mathematica? What is your usual method for doing this?

    I find that I often get images that don’t quite look the way I want. Your images seem really vibrant. Any tips would be greatly appreciated.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

Welcome !

You will find here some of my favorite hobbies and interests, especially science and art.

I hope you enjoy it!

Subscribe to the RSS feed to stay informed when I publish something new here.

I would love to hear from you! Please feel free to send me an email : bugman123-at-gmail-dot-com


Blog Stats

  • 555,424 hits

%d bloggers like this: