## Archive for the 'Mandelbrot' Category

18
Aug
09

### 3D Mandelbrot Set Pickover Stalks

Pickover Stalks are cross-shaped orbit traps invented by Clifford Pickover. See also my 2D Pickover stalks fractal.

18
Aug
09

### 3D Mandelbrot Set Orbit Trap

Orbit trapping is a popular technique for mapping arbitrary shapes to a fractal. This 3D orbit trap is shaped like a sphere. See also my 2D orbit trap fractals.

30
Jul
09

### 4D “Mandy Cousin” Julia and Mandelbrot Sets

Julia : c={-0.2,0.8,0,0}, imax=12

{x,y,z,w}2 = {x2-y2-z2+w2, 2(xy+zw), 2(xz+yw), 2(xw+yz)}
David Makin suggested this formula to me for squaring a 4D hypercomplex number.

Mandelbrot Set, imax=12

Minibrot, imax=20

30
Jul
09

### 4D Julia and Mandelbrot Sets Variations

 Julia : c={-0.2,0.8,0,0}, imax=12 {x,y,z,w}2 = {x2-y2-z2-w2, 2(xy+zw), 2(xz-yw), 2(xw+yz)} Here is another formula for squaring a 4D hypercomplex number that David Makin suggested to me. Mandelbrot Set, imax=12 Minibrot, imax=20
30
Jul
09

### 4D Bicomplex Mandelbrot Set

{x,y,z,w}2 = {x2-y2-z2+w2, 2(xy-zw), 2(xz-yw), 2(xw+yz)}
This “Tetrabrot” reminds me of a Bismuth crystal.

Here is some Mathematica code for the minibrot:
```(* runtime: 2.6 minutes, increase n for higher resolution *) n = 100; Norm[x_] := x.x; Square[{x_, y_, z_, w_}] := {x^2 - y^2 - z^2 + w^2, 2 (x y - z w), 2 (x z - y w), 2 (x w + y z)}; Mandelbrot4D[qc_] := Module[{q = {0, 0, 0, 0}, i = 0}, While[i < 20 && Norm[q] < 4, q = Square[q] + qc; i++]; i]; image = Table[z = 0.06; While[z >= 0 && Mandelbrot4D[{x, y, z, 0}] < 20, z -=0.12/n]; If[z < 0, -0.06, z], {y, -0.06, 0.06, 0.12/n}, {x, -1.82, -1.7, 0.12/n}]; ListDensityPlot[image, Mesh -> False, Frame -> False, PlotRange -> {-0.02, 0.06}]```

 Tetrabrot, imax=12 Minibrot, imax=20 power=3, imax=12 Bismuth Crystal

24
Jul
09

### 4D “Roundy” Mandelbrot Set

 Mandelbrot Set, imax=24 Minibrot, imax=21

{x,y,z,w}2 = {x2-y2-z2-w2, 2(xy+zw), 2(xz+yw), 2(xw+yz)}
This formula for squaring a 4D hypercomplex number is probably the most popular method for creating 3D Mandelbrot sets. Here is some Mathematica code:
```(* runtime: 1.2 minutes, increase n for higher resolution *) n = 100; Norm[x_] := x.x; Square[{x_, y_, z_, w_}] := {x^2 - y^2 - z^2 - w^2, 2 (x y + z w), 2 (x z + y w), 2 (x w + y z)}; Mandelbrot4D[qc_] := Module[{q = {0, 0, 0, 0}, i = 0}, While[i < 24 && Norm[q] < 4, q = Square[q] + qc; i++]; i]; image = Table[z = 1.5; While[z >= 0 && Mandelbrot4D[{x, y, z, 0}] < 24, z -= 3/n]; If[z < 0, -1.5, z], {y, -1.5, 1.5, 3/n}, {x, -2.0, 1.0, 3/n}]; ListDensityPlot[image, Mesh -> False, Frame -> False, PlotRange -> {-0.1,1.5}]```

07
Jul
09

### 4D Quaternion Mandelbrot Set

 Mandelbrot Set, imax=12 Minibrot, imax=18

{x,y,z,w}2 = {x2-y2-z2-w2, 2xy, 2xz, 2xw}
Quaternions are 4D hypercomplex numbers, discovered in 1843 by Sir William Rowan Hamilton. They are mathematically elegant, but unfortunately, they produce axisymmetric results when used to calculate the 3D Mandelbrot set.

Link: Quat Minibrot – by David Makin

## Welcome !

You will find here some of my favorite hobbies and interests, especially science and art.

I hope you enjoy it!

Subscribe to the RSS feed to stay informed when I publish something new here.

I would love to hear from you! Please feel free to send me an email : bugman123-at-gmail-dot-com